A software program that prescribes a regimen for avoiding jet lag using timed light exposure has been created by researchers at Brigham and Women8217;s Hospital and the University of Michigan.
The method has been described in the open-access journal PLoS Computational Biology.
Travelling across several times zones can cause an individual to experience jet lag,which includes trouble sleeping at night and difficulty remaining awake during the day. These effects largely reflect de-synchronization between the body8217;s internal time clock and local environmental cues.
Now,the program,which seeks to re-synchronize the body with its new environment,considers inputs like background light level and the number of time zones travelled. Then,based on a mathematical model,the program gives users exact times of the day when they should apply countermeasures such as bright light to intervene and reduce the effects of jet lag.
Timed light exposure is a well known synchronization method,and when used properly,this intervention can reset an individual8221;8221;s internal clock to align with local time. The result is more efficient sleep,a decrease in fatigue,and an increase in cognitive performance. Poorly timed light exposure can prolong the re-synchronization process.
Using their computational method,researchers simulated shifting sleep-wake schedules and the subsequent light interventions for realigning internal clocks with local time.
They found that the mathematical computation resulted in quicker design of schedules and also predictions of substantial performance improvements. They were able to show that the computation provided the optimal result for timing light exposure to reduce jet lag symptoms.
8220;Using this computation in a prototyped software application allows a user to set a background light level and the number of time zones travelled to obtain a recommendation of when to expose a subject to bright light,such as the bright lights sometimes used to treat Seasonal Affective Disorder8221; said lead-author Dennis Dean.
8220;Although this method is not yet available to the public,it has direct implications for designing schedules for jet lag,shift-work,and extreme environments,such as in space,undersea or in polar regions, the expert added.
8220;This work shows how interventions can cut the number of days needed to adjust to a new time zone by half,8221; said co-author Daniel Forger.