scorecardresearch
Follow Us:
Tuesday, October 20, 2020

Shape-shifting material can morph using heat, light

The material developed by University of Colorado (CU) Boulder in the US allows a square peg to morph and fit into a round hole before fully reverting to its original form.

By: PTI | Washington | August 26, 2018 8:54:32 pm
Shape shifting material, robotics, University of Colorado Boulder, liquid crystal elastomers, television displays, flexible materials, elastic polymers, molecular alignment The material achieves readily programmable two-way transformations on a macroscopic level by using liquid crystal elastomers (LCEs), the same technology underlying modern television displays. (Image Source: University of Colorado Boulder)

Scientists have developed a material that can transform into complex, pre-programmed shapes when exposed to light or heat, and may have a broad range applications for robotics, medical devices and artificial muscles. The material developed by University of Colorado (CU) Boulder in the US allows a square peg to morph and fit into a round hole before fully reverting to its original form.

“The ability to form materials that can repeatedly oscillate back and forth between two independent shapes by exposing them to light will open up a wide range of new applications and approaches to areas such as additive manufacturing, robotics and biomaterials,” said Christopher Bowman, a professor at CU Boulder. Previous efforts have used a variety of physical mechanisms to alter an object’s size, shape or texture with programmable stimuli. However, such materials have historically been limited in size or extent and the object state changes have proven difficult to fully reverse.

The material achieves readily programmable two-way transformations on a macroscopic level by using liquid crystal elastomers (LCEs), the same technology underlying modern television displays. The unique molecular arrangement of LCEs make them susceptible to dynamic change via heat and light. To solve this, the researchers installed a light-activated trigger to LCE networks that can set a desired molecular alignment in advance by exposing the object to particular wavelengths of light. The trigger then remains inactive until exposed to the corresponding heat stimuli. For example, a hand-folded origami swan programmed in this fashion will remain folded at room temperature.

When heated to 200 degrees Fahrenheit, however, the swan relaxes into a flat sheet. Later, as it cools back to room temperature, it will gradually regain its pre-programmed swan shape. The ability to change and then change back gives this new material a wide range of possible applications, especially for future biomedical devices that could become more flexible and adaptable than ever before.

📣 The Indian Express is now on Telegram. Click here to join our channel (@indianexpress) and stay updated with the latest headlines

For all the latest Technology News, download Indian Express App.

Advertisement
Advertisement
Advertisement
Advertisement