scorecardresearch
Monday, Dec 05, 2022
Premium

Explained: What caused Earth’s first mass extinction

The Ordovician mass extinction that occurred about 445 million years ago killed about 85% of all species.

Ordovician Turbidites in Quarentine Bay, Eden, NSW, Australia. (File Photo: Wikimedia Commons)

Before the Cretaceous mass extinction known for wiping out non-avian dinosaurs, the Earth had witnessed four other great mass extinctions. A paper published last week in the journal, Nature Geoscience, has come up with a new reason behind the first mass extinction, also known as the Late Ordovician mass extinction. The article notes that the cooling climate likely changed the ocean circulation pattern. This caused a disruption in the flow of oxygen-rich water from the shallow seas to deeper oceans, leading to a mass extinction of marine creatures.

“If you had gone snorkelling in an Ordovician sea you would have seen some familiar groups like clams and snails and sponges, but also many other groups that are now very reduced in diversity or entirely extinct like trilobites, brachiopods, and crinoids,” said one of the authors, Seth Finnegan, in a release. He is from the Department of Integrative Biology, University of California, Berkeley.

The Ordovician mass extinction that occurred about 445 million years ago killed about 85% of all species. The other big extinction events were:

  • The Devonian mass extinction (about 375 million years ago) wiped out about 75% of the world’s species.
  • The Permian mass extinction(about 250 million years ago) also known as the Great Dying caused the extinction of over 95% of all species.
  • The Triassic mass extinction (200 million years ago) eliminated about 80% of Earth’s species, including some dinosaurs.

Some researchers have pointed out that we are currently experiencing a sixth mass extinction as the result of human-induced climate change.

Subscriber Only Stories
UPSC Key- December 5, 2022: Why you should read ‘Iran’s morality police’ ...Premium
UPSC Essentials | Key terms of the past week with MCQsPremium
ExplainSpeaking | What the RBI will do this week and whyPremium
Hardik, Alpesh, Jignesh: Young guns caught in keen ‘battles of prestige’ ...Premium

There have been several theories behind each mass extinction and with advances in new technologies, researchers have been uncovering more intricate details about these events.

“For decades, the prevailing school of thought in our field is that global warming causes the oceans to lose oxygen and thus impact marine habitability, potentially destabilising the entire ecosystem,” Zunli Lu, one of the lead authors, said. “In recent years, mounting evidence points to several episodes in the Earth’s history when oxygen levels also dropped in cooling climates,” the author added. Lu is a professor of Earth and environmental sciences at Syracuse University, US.

The team measured iodine concentration in rocks from that period to understand the changes in oceanic oxygen levels. Computer modelling simulations suggested that climate cooling was likely responsible for the Late Ordovician mass extinction. They also noticed a lack of oxygen or anoxia in deep oceans during the period.

Advertisement

“Upper-ocean oxygenation in response to cooling was anticipated because atmospheric oxygen preferentially dissolves in cold waters. However, we were surprised to see expanded anoxia in the lower ocean since anoxia in Earth’s history is generally associated with volcanism-induced global warming,” said the first author, Alexandre Pohl, from the Department of Earth and Planetary Sciences, the University of California, in a release.

Their models that used data on the Ordovician climate and marine biogeochemical cycles during that period showed “seafloor and upper-ocean oxygenation in response to ongoing global cooling.” This deep-sea anoxia affected ocean circulation. Pohl says that a key point to keep in mind is that ocean circulation is a very important component of the climatic system.

The paper concludes that climate cooling may have led to changes in nutrient cycling, primary producer communities which ultimately drove the Late Ordovician mass extinction.

Advertisement

Newsletter | Click to get the day’s best explainers in your inbox

First published on: 07-11-2021 at 01:27:27 pm
Next Story

If New Zealand lose, questions will be raised: Comments, memes go viral before Afghanistan’s ‘must-win’ game for India

Latest Comment
Post Comment
Read Comments
Advertisement
Advertisement
Advertisement
Advertisement
close